Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neuroinform ; 18: 1324981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558825

RESUMO

Introduction: Automated seizure detection promises to aid in the prevention of SUDEP and improve the quality of care by assisting in epilepsy diagnosis and treatment adjustment. Methods: In this phase 2 exploratory study, the performance of a contactless, marker-free, video-based motor seizure detection system is assessed, considering video recordings of patients (age 0-80 years), in terms of sensitivity, specificity, and Receiver Operating Characteristic (ROC) curves, with respect to video-electroencephalographic monitoring (VEM) as the medical gold standard. Detection performances of five categories of motor epileptic seizures (tonic-clonic, hyperkinetic, tonic, unclassified motor, automatisms) and psychogenic non-epileptic seizures (PNES) with a motor behavioral component lasting for >10 s were assessed independently at different detection thresholds (rather than as a categorical classification problem). A total of 230 patients were recruited in the study, of which 334 in-scope (>10 s) motor seizures (out of 1,114 total seizures) were identified by VEM reported from 81 patients. We analyzed both daytime and nocturnal recordings. The control threshold was evaluated at a range of values to compare the sensitivity (n = 81 subjects with seizures) and false detection rate (FDR) (n = all 230 subjects). Results: At optimal thresholds, the performance of seizure groups in terms of sensitivity (CI) and FDR/h (CI): tonic-clonic- 95.2% (82.4, 100%); 0.09 (0.077, 0.103), hyperkinetic- 92.9% (68.5, 98.7%); 0.64 (0.59, 0.69), tonic- 78.3% (64.4, 87.7%); 5.87 (5.51, 6.23), automatism- 86.7% (73.5, 97.7%); 3.34 (3.12, 3.58), unclassified motor seizures- 78% (65.4, 90.4%); 4.81 (4.50, 5.14), and PNES- 97.7% (97.7, 100%); 1.73 (1.61, 1.86). A generic threshold recommended for all motor seizures under study asserted 88% sensitivity and 6.48 FDR/h. Discussion: These results indicate an achievable performance for major motor seizure detection that is clinically applicable for use as a seizure screening solution in diagnostic workflows.

2.
Brain Behav ; 12(9): e2737, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35939047

RESUMO

BACKGROUND: Unsupervised nocturnal tonic-clonic seizures (TCSs) may lead to sudden unexpected death in epilepsy (SUDEP). Major motor seizures (TCSs and hypermotor seizures) may lead to injuries. Our goal was to develop and validate an automated audio-video system for the real-time detection of major nocturnal motor seizures. METHODS: In this Phase-3 clinical validation study, we assessed the performance of automated detection of nocturnal motor seizures using audio-video streaming, computer vision and an artificial intelligence-based algorithm (Nelli). The detection threshold was predefined, the validation dataset was independent from the training dataset, patients were prospectively recruited, and the analysis was performed in real time. The gold standard was based on expert evaluation of long-term video electroencephalography (EEG). The primary outcome was the detection of nocturnal major motor seizures (TCSs and hypermotor seizures). The secondary outcome was the detection of other (minor) nocturnal motor seizures. RESULTS: We recruited 191 participants aged 1-72 years (median: 20 years), and we monitored them for 4183 h during the night. Device deficiency was present 10.5% of the time. Fifty-one patients had nocturnal motor seizures during the recording. The sensitivity for the major motor seizures was 93.7% (95% confidence interval: 69.8%-99.8%). The system detected all 11 TCS and four out of five (80%) hypermotor seizures. For the minor motor seizure types, the sensitivity was low (8.3%). The false detection rate was 0.16 per h. CONCLUSION: The Nelli system detects nocturnal major motor seizures with a high sensitivity and is suitable for implementation in institutions (hospitals, residential care facilities), where rapid interventions triggered by alarms can potentially reduce the risk of SUDEP and injuries.


Assuntos
Epilepsia Tônico-Clônica , Morte Súbita Inesperada na Epilepsia , Inteligência Artificial , Eletroencefalografia , Epilepsia Tônico-Clônica/complicações , Epilepsia Tônico-Clônica/diagnóstico , Humanos , Convulsões/complicações , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA